
Functional languages in games:

Plotting the coup

Sam Martin 

AngloHaskell 2009



(Quick slide about me)

• Hi, I’m Sam Martin

• Once game developer
– Kuju, Intrepid, Lionhead

• Now lighting middleware developer
– Lead code @ Geomerics: Enlighten (RT radiosity SDK)

• And part time Haskell enthusiast



Reasons for this talk

• Games are a great playground for functional 
languages
– Demanding
– Competitive
– Interesting!

• Multi-core going to P0WN us all !!1!

• Game developers are an adaptable sort



Talk outline

1. The Why

2. The Killer App: Multi-core

3. Haskell vs. C++

4. Games in Haskell



This is the start of the road. Not a roadmap.

Expect: hand waving, much shuffling of details 
under carpet till later...



Why mix games and functional 
languages?

• In a nutshell:

– Games already quite functional

– Increase productivity in many ways

– Increase performance through parallelism

• Rest will become obvious, and...



I am utterly, utterly compelled to see 
if it will work.



Why now?

• To date, productivity benefits probably not 
enough to cover cost of transition.

• But we live in interesting times...

• Multithreading really could tip the stalemate 
into a landslide



Why does multi-core matter?



Looking the devil in the eye

• Now:
– Most gaming PCs dual core.

• http://store.steampowered.com/hwsurvey/

– XBox360, PS3 both multi-core 
• XBox360 = GPU, 3x hyper-threaded cores. UMA. Less in practice.
• PS3 = GPU, 1x PPU, 6x SPU, explicit DMA. 

• Future:
– Will see consumer 16-core processors this/next year

• (-ish)
• AMD/Intel understandably hazy about exact dates.

– Intel’s Larrabee “late-2010” (-ish)
• Starting with 32 cores

– GPU-CPU collision course
– To infinity and beyond!
– Only X years away! 

• Where X is < 2 or maybe 3. AAAAAAAAAAAAAARRRHHHHHH!

http://store.steampowered.com/hwsurvey/


How quickly it starts to matter

• Huge difference between 2, 4, 8, 16,... cores!

• No really, it’s huge!

• (Side track)
– Actually this a bit of a problem...
– Not acceptable to just run 2x slower on a PC with half 

the cores
– Maintaining consistent frame rates over that range is 

hard



How quickly it hurts

• Effective parallelism on large #cores is:

– Increasingly hard

– Vital

• Amdahl’s law: 



The answer!

• Simple really

• Compile regular code to GPU code!

makeFast :: Code -> GPUCode

• ...

• Done! Now have a cup of tea .



Haskell + multi-core = gold (in theory)

• Basic premise: 
– No side effects => thread safe code
– Sadly doesn’t “just work” in practice. Damn.

• Loads of different research lines
– Lots of EDSLs, prodding GPUs all different ways
– Compiler extensions, libraries.

• Particularly excited by Nested Data Parallelism
– Semi-implicit approach
– Sounds like it’s still a way off, but looking promising



What happens to games without 
functional languages?

• Suspect:
– Imperative code written in more functional style (no bad thing)
– Wide use of functional helper libraries
– Suffer the pain

• This is probably the default position

• Examples
– Intel threaded building blocks

• Nested data parallelism

– FC++
• Functional language in C++ templates

– SPURS on PS3
• Job manager system

– Gramps, OpenCL (arguably a language), CUDA, BrookGPU, Ct, etc, etc
– Loads of others, including hand-rolled solutions



Task/Data/Explicit/Implicit

• Current consoles/PCs
– Mostly explicit task scheduling

• GPUS 
– More data parallelism than task parallelism
– “Semi-implicit”

• Always room for both, but:
– Shades of grey in-between data/task parallelism also important
– Just not enough tasks to schedule after a while -> data parallelism will become 

more important
– Will have to be more implicit in the future

• Manual parallelism a pain in the ass, but manual data parallelism is 
(arguably) even more so.



A case in point

• Sparse matrix traversal code in Ct

• (Sorry Intel! Nothing personal)

• Nicked straight from Ct white paper

Sequential:

for (col = 0; col < col_num; col++) {
for (elt = ColP[col]; elt < ColP[col+1];elt++) 
{

int row = RowIdx[elt];
…touch elements of A[row][col]…

}
}



A case in point 

• Promise not deliberately picking on Ct... 

• The rest really aren’t great either.

Data parallel:

TVEC<F64> sparseMatrixVectorProducSC(
TVEC<F64> Values,
TVEC<I32> RowIdx,
TVEC<I32> ColP,
TVEC<F64> v) 

{
TVEC<F64> expv = distribute(v,ColP);
TVEC<F64> product = Values*expv;
product = product.applyNesting(RowIdx, ctIndex) ;
TVEC<F64> result = product.addReduce();
return result;

}



Life is hard enough



(that’s enough misery for now)

Haskell or C++? 

FIGHT!



Haskell – my prime candidate

• It’s a heavy weight
– Amazing type system.
– EDSLs / monads / laziness / streams
– Purity + multithreading research
– Good FFI design (implementation still needs work)
– (You know the rest)
– Kicks ass!

• Other language contenders
– Haskell variants and extensions (DDC?)
– Lisp
– OCaml
– Erlang
– D, F#, ...



Why C++ is a tough nut to crack

• It is an exceptional language
– Don’t believe the hype, C++ is alive and well 
– Has a huge monopoly in games
– C# often used for tools
– Lua/python/homebrew used for scripting

• Can glue anything to anything
– Cross platform compilation
– Can drop to assembly
– And mix that with high level concepts

• Performance is everything
– Overheads are always controllable



No really, performance is everything

• Code quality matters
– Exception handling is uncommon
– Focus on data: structure packing, alignment etc
– Avoid unnecessary virtuals, branches, etc
– Mem leaks, general instability => death
– Hand optimised inner loops, etc

• Limited use of dynamic memory
– malloc() is expensive
– Fragmentation is a major problem

• Worth significant development sacrifices
– No or hand-rolled garbage collection
– No auto meta data (reflection, serialisation, ..)
– Wide open to painful bugs
– Large compilation and iteration time
– Large projects become a significant burden
– ‘Explicit everything’



Development model breaking down?

The 4 riders of the apocalypse:

– Timely development
• Projects die under the weight of their own ambition

– Complexities of scale
• Projects die under their own weight

– Execution speed
• Projects die when everything else kicks their ass

– And even then, they sometimes die because they 
aren’t fun enough (sneaky rider #4)



Evidence of other functional rebellions

• OCaml at Definition6 – Chris Hecker

• Lisp (GOAL) at Naughty Dog

• CG / HLSL
– “Referentially transparent” languages

– (Note how well they optimise)

• Tim Sweeney at Epic

• Lua, (maybe it counts...)

• Not much else to my knowledge



Why aren’t productivity benefits 
enough?

• It is close to call, but probably no.

• Would put money on never seeing a leading 
game title written in C#

• Scripting systems + sensible development is 
enough in practice



Haskell – more things to like

• “Why functional programming matters”
– New kinds of glue 
– Predicts functional languages will scale well (?)

• ghc-core
– Essential to see the internals

• Mature extensible compiler
• Expect type system to be helpful

– Plenty of suitable problems 

• Haskell plug-in
– Dynamic code!

• Bright, thriving community
– Important! Code doesn’t just write itself.



Haskell – the road to go

• Parallelism
• How to deal with space leaks and inappropriate laziness?
• FFI / compilation

– Cross platform support more than gcc backend
– Target hard architectures: Larrabee, Cell SPUs. They will be unforgiving.

• Custom runtimes
– Should be exposed and easy to integrate/modify.

• People should and will customise it

– More control over memory
• ‘Strategies’ are good, verbose code would kill benefits

– GC “applicable for games”

• SIMD support
• Worry more about locality of memory
• Performance compilation warnings?

• (yeah, it’s a bit wishy washy at the moment. I’m on it.)



Haskell rules the world. 
So now what?



The fun bit 

• Apply Haskell to game coding problems!

• Wide variety to choose from:
– Rendering: <insert huge topic>
– Physics: rigid bodies, fluids, vehicles, ...
– FX: particles, volumetric fx, ...
– Animation: IK, rigging, blending, authoring, ...
– Geometry: collision detection, authoring, ...
– AI: <insert large topic>
– Navigation: path finding, obstacle avoidance, ...
– Tools: distributed build systems, asset management, ...
– Iterative development: coding ‘live’, immediate feedback, ...
– ...



Slimming the list down a bit...

• A quick overview of a handful
– Really quite an arbitrary list

– Loads of problems I’d like to explore in Haskell

• Rendering
– Everyone likes pretty pictures. 

– Still a huge topic

• State machines in AI

• Asset conditioning pipelines



Example #1: Rendering in Haskell

• Haskell OpenGL bindings very neat but not really very functional

• OpenGL is not a good model of what actually happens

• Don’t think side effects, think instruction buffer
– Play/read points
– Like audio buffer
– Instruction stream

• Re-think functional graphics API in Haskell

• A starting point: 
– doFrame :: [Instruction] -> IO ()

• Model for thinking about other problems in games. Be suspicious of IO. 



Rendering as...

• Series of transformations from scene 
description to instruction buffer

• High and low level optimisation potential

• Like a compiler!



Some common high level rendering 
optimisations

• Stream rendering

• Combining together similar shaders

• Shader stitching/generation

• Using common vertex declaration

• Forward vs deferred rendering

• All quite time consuming to change



The thing about optimisation is..

• People rarely factor in the lost opportunity cost!

• Time == potential for optimisations

• High level rendering optimisations time 
consuming but important

• Goal: make high level optimisations less time 
consuming without sacrificing performance.



State machines

• Basic state machines are switch statements.

• Quickly get out of hand.

• Possible next steps:
– States as objects
– Hierarchical state machines
– Component oriented systems

• Lots of verbose code. 
– Pros and cons. No especially good solution.



State machines

• Haskell?

– Don’t know!

– Exercise for reader 

• Weapons at hand:

– Monads

– Algebraic types

– Functional glue



Summary

• Assertions: 
– Games community would adopt Haskell immediately 

give demonstrable Killer App

– Parallelism could be Killer App

– Games would present interesting problems for Haskell 
community

– Game hardware would present interesting hardware 
challenges for functional languages.

• Please draw own conclusions on the above.



Thank you

• Let me know your thoughts!

• Drop me a line for links to any referenced 
material

• sam@palgorithm.co.uk
• Homepage: http://palgorithm.co.uk

• Thanks to Chris Hecker and Pål-Kristian Engstad
for their input.

mailto:sam@palgorithm.co.uk
http://palgorithm.co.uk/
http://palgorithm.co.uk/

