Tag Archives: games

Haskell For Games!

I've been head-down in a big stack of papers since around March this year. That was the point at which I first started to get excited about the idea of Haskell becoming a plausible language for use in games development. More recently I decided to start doing something about it and gave a talk to a group of dedicated Haskellers at AngloHaskell 2009. The event turned out to be a lot of fun and I think it's safe to say the talk went pretty well. Here's the abstract.

Functional Languages in Games: Plotting the Coup

[Slides as PDF]

As a games developer by trade, my experience of the industry leads me to suspect games development is approaching a tipping point where functional languages could enact a successful coup. The revolution would claim a chunk of C++-owned territory for the victor and mark an important milestone in the development of functional languages. It will not be easy. Games development is notoriously demanding and the successful functional language would need to meet stringent performance requirements, have clearly demonstrable 'killer apps', jump through hoops of fire and tell jokes at parties. This talk will discuss how close Haskell is to meeting these demands, the challenges that remain, evidence of functional languages already in games, and how Haskell compares against its nearest competitors.

Haskell For Games!

At first glance it sounds like a crazy idea. One to file away with the other crazy ideas to replace C++ with Java/C#/Python/etc. Most alternatives to C++ are so unlikely to succeed in practice that they appear to taint the very idea of replacing C++. I've written before about my high regard for C++,  but as powerful and effective as it is for games development, it does not represent an impossible challenge and we don't have to look to replace it entirely. Finding it a suitable companion would be a major step forward and is the goal I'd choose to focus on.

Multi-core

There are powerful currents moving in modern computer hardware, pulling us inevitably into murky multi-core waters. However this movement also begins to make the idea of doing games development in an alternative language more plausible. What do we do when large multi-core systems become a standard hardware platform? (A reality that I note is only a handful of years away.) I have yet to see a parallelisation option that don't make me think life in this new age in C++ will be rather hard. And would it be any easier in C# or Java? No. Multi-core life there will likely be just as tough. However, these aren't the only options.

Functional languages

I'm far from the first to notice this, but pure functional languages - as opposed to the imperative languages most of us are used to - do at least have a theoretical advantage. Pure functional code does not have side effects. If you call it with the same parameters you will always get the same answer. It is thread-safe at a fundamental level giving opportunities for optimisation and parallel evaluation that are either infeasible or impossible with imperative code. They aren't so alien as you may immediately think. You may well already work with such a language without really realising it. Ignoring some syntactical obfuscations, both CG and HLSL are essentially pure, referentially transparent languages. Neither language can wipe your hardrive or save state in global variables, and it's no coincidence that they both optimise exceptionally well.

As you can well imagine, this is not an open-and-shut success case. Achieving good parallelism, even from a functional starting point, is still hard. In the previous example of CG/HLSL, the hard parallelism work is still done by the programmer by setting up the GPU pipeline, rather than magically derived from the CG/HLSL. Doing complicated, dependent operations in a GPU architecture is tricky and the subject of many GPGPU articles, although to be fair many of these obstacles are due to the current GPU architecture than the more fundamental issues in utilising parallelism.

Achieving parallel code that includes grubby details like nesting and runtime data dependencies are hard problems. But in the long term I think it's more plausible to turn these problems into successes in functional languages than anywhere else. Compiler-parallelised code, even if partly programmer controlled, would be a Killer App for any alternative language, and one feature that C++ is unlikely to ever have. Without this feature, there are many other benefits for games development to adopt a functional sister-language, but the cost of doing so may cancel out the cost of the adoption.

Multi-core Haskell

I'm championing Haskell from the functional language pack for a variety of reasons, several of which are noted briefly in my talk and the rest I'll expand on further in the future. I hope many of the benefits of Haskell will be apparent to anyone prepared to spend the time learning it, and I'd urge anyone interested to get stuck in immediately. There are several decent tutorials referenced from the Haskell Wiki, and I can highly recommend, "Learn You A Haskell For Great Good!", as a great starting point. One other very notable highlight is the on-going research into extending the language to support Nested Data Parallelism. Although not complete, this research does look very promising and where I'm hoping some of the magic may take place.

Haskell for Games is by no means a done deal, but my enthusiasm for this project has at least withstood it's first challenge - presenting these ideas to members of the Haskell community - and if anything has grown as a result.